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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-81k4

NOMOGRAPHIC SOLUTION OF THE MOMENTUM EQUATION
FOR VTOL-STOL AIRCRAFT

By Harry H. Heyson
- SUMMARY

A general nomographic solution for the induced velocities and
wake skew angle is presented for use with VIOL-STOL systems.

INTRODUCTION

VIOIL-STOL aircraft are characterized in general by the fact that
in some portion of their flight envelope the wake is sharply inclined
to the free stream. Under such conditions, the usual small-angle
assumptions used in determining the induced velocities, and conse-
quently, the power required, are no longer valid. Indeed, the use of
small-angle assumptions leads to such anomalous results as infinite
induced velocities and required power in the extreme case of hovering.

The aforementioned difficulties may be avoided by a more complete
examination of the horizontal and vertical momentum imparted to the air
by the aircraft at low speeds. The resulting equation is a quartic in
the induced velocity, and, as such, is difficult to apply. On the other
hand, this quartic can be solved in its most general terms and the
resulting solution then can be derived and presented in the form of a
chart, or nomograph, from which the required induced velocities may be
read directly. This paper presents such a chart.

The problem of estimating the induced velocities becomes of addi-
tional importance since the induced velocities combine with the forward
velocity to determine the wake skew angle upon which, for example, wind-
tunnel corrections and ground effect have been shown to depend. (See
refs. 1 and 2.) The wake skew angle also can be read directly from the
nomograph presented herein.
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SYMBOLS

momentum area of aerodynamic force-generating system, sq ft

induced drag, or horizontal component of force, 1b

1ift, 1b
ratio of initial to final induced velocity

free-stream dynamic pressure, %pV2, lb/sq ft

slipstream dynamic pressure, %p%puo + V)e, lb/sq ft

thrust of a rotor, 1b

horizontal induced velocity, at the force-generating system,
required to produce & given horizontal force, positive rear-
ward, ft/sec

free-stream velocity, ft/sec

resultant velocity at force-generating system, ft/sec

vertical induced velocity, at the force-generating system,
required to produce a given vertical force, positive upward,
ft/sec

hovering induced velocity, vertical induced velocity when
V=0 and Dj =0 (see eqgs. (8) and (23)), positive
upward, ft/sec

1lift and drag axes, perpendicular and parallel, respectively,
to the horizontal or free-stream direction (see fig. 1)

angle of attack of tip-path plane, positive when leading edge
of disk is high, deg .

net wake deflection angle, angle between the wake and the
X-axis, or free-stream direction, 90° - X, deg (see fig. 1)

mean induced velocity, normal to the tip-path plane of a rotor,
positive downward, ft/sec




Vi hovering mean-induced velocity, normal to the tip-path plane
of a rotor, positive downward, ft/sec

o mass density of air, slugs/cu ft

X wake skew angle, angle between the wake and the negative

Z-axis, positive when measured rearward, deg (see fig. 1)
THEORY

Induced Velocities

Because of its 1ift and drag forces, the machine creates the veloc-
ities ug and wp at its own location and the velocities nugy and nwg

in the far wake. The force and velocity vectors are shown in figure 1.
From this figure, it may be seen that the resultant velocity VR at the

force-generating device is

Vg = (v + u0)2 + (-w0)2 (1)

Furthermore, the 1ift and induced drag are
L = pApVg(-nwp) (2)
Dj = pAyVg(-nup) (3)

where A, 1is the area of the cylinder of air affected by a wing, the

actual area of a propeller or rotor, or the duct-exit area of a ducted
fan.

Notice that a forward thrust is merely considered equivalent to a
negative drag in equation (3).

Dividing equation (3) by equation (2) yields

= R (4)

L %o

provided, of course, that L 1s not zero.



Now substitute equation (4) into equation (1) to obtain

Vg = Ve 4 o (2%) Vg + {} + (— %%)%](-wo)g (5)
R PR

and from equation (2)

or

2.2 (1)

V-
o 2]

Now, if the force-generating device could hover with the same 1ift,
the same momentum area, zero forward speed, and zero induced drag, the
vertical induced velocity in hovering wy, would be found from equa-

tions (6) and (7) as
- d L '
Wy = % s (8)

where the negative sign corresponds to a positive or upward 1lift and
the positive sign corresponds to a negative or downward 1ift. Note
that wy, is purely fictitious for a wing, but that it can still be

Yo

calculated for use as a reference velocity.
Combining equations (6), (7), and (8) yields
WO 2 —WO
(W_h v
1
= = (9)
D
1+ (jL + —5>
w0 L

or, finally, squaring both sides of equation (9)
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Equation (10) is essentially the same as the equivalent expression
derived for a rotor in reference % except that in the present case equa-
tion (10) gives the vertical component of induced velocity in terms of
an arbitrary value of the induced drag-1lift ratio, whereas reference 3
solves for a total induced velocity which is assumed to be normal to
the plane of the rotor.

Equation (10) is, of course, a quartic in wo and, as such, is

difficult to solve for any one given case. Points for use in the con-
struction of a general nomographic solution, however, may be obtained
rapidly by substituting a series of values for V/wo into equation (lO),

solving for wp/w,, and then noting that
y .12 (11)

The results of this calculation can then be plotted with WO/ Wn
as a function of V/wh for specified values of Di/L. Such a chart is

presented in figure 2; however, a full discussion of it will be deferred
to a later section of this paper.

With wp obtained from a general nomograph of equations (10)
and (11), ug can be obtained from equation (4).

Wake Skew Angle

The remaining item of interest is the wake skew angle, or its com-
plement, the angle by which the wake 1s deflected from the horizontal
or free-stream direction. This angle may be obtained by examining fig-
ure 1 which indicates that

= - 4 - = (12)




so that equation (9) may be rewritten as

(?)e S — (13)
h Vl + tan2X

or, solving equation (13) for X

WO 2
|X| = cos™? <——> (14)
w.
h
D.

where, from equation (12), X 1is positive if :%6 > j% and negative
o v _ D
if % < -r.

The net wake deflection angle, being the complement of X, is then
immediately given as

1 Y0\
en = sin <;’E> (15)
- o . . v Db .
and, similarly, 6, 1s in the first quadrant if :56 > T and in the
. v _Di
second quadrant if —— < —/,
-Wo L

The Case L =0

When L 1is zero, the foregoing treatment is not necessary. Note
that for L =0, wp =0, so that equation (1) becomes
VR =V + ug (16)

Equation (3) may then be solved immediately in the form

uo + ¥ = (g)g-;:—i% (17)

It is of interest to square both sides of equation (17) and then
multiply both sides by 2p +to obtain
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which for the large class of devices characterized by n =2 (i.e.,
wings, rotors, unshrouded propellers) becomes

VY N

oleug + V)2 = 22 - 2 (18)

qs=q-ADi (19)

Equation (19) is, of course, quite familiar since it yields the
slipstream dynamic pressure used in nondimensionalizing many VIOL test
results. (Notice that the thrust of a propeller at zero angle of attack
is equal to -Di.) It is evident that equation (19) holds for all wings,
rotors, and propellers where n 1is equal to 2. On the other hand, con-
sider, for example, a ducted fan where n 1is not equal to 2. 1In this
case, equation (17) cannot be simplified to the form of equation (19).
Note that, in general,

s = %p(nuo + V)2

#aq- %i (20)

It is, of course, obvious for the case of L = O that X = 90°
and 6, = 0°. (See fig. 1.)

Fquivalence of Reference 3

Reference 3 derives an induced-velocity equation which corresponds
to equation (lO) for the special case of a rotor. Since the work of
reference 3 has been confirmed experimentally, both with regard to
induced velocity (ref. 4) and wake skew angle (ref. 5) it is advisable
to examine the equivalence of reference 3 and the present analysis.

Reference 3 assumes a thrust force T on the rotor which is nor-
mal to the rotor disk and a corresponding induced velocity v also
normal to the disk. Thus, from figure 1(b)

Dy

= tan a 21
: (21)
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(23)

Vh=

Substituting the values of w, W and Di/L as obtained from

equations (21), (22), and (23) into equation (10), expanding, and then
simplifying leads to

e

Vh / 2
1 -2 eL sin a + K$L>
' 0 0

which, noting that o in this paper is identical to -a 1in reference 3,
is identical to the expression derived in reference 3.

In view of the complete equivalence of reference 3 and the present
analysis, the experimental confirmation of references 4 and 5 may be
considered to apply to the present analysis as well.

PRESENTATION OF RESULTS

A general nomograph for solution of the momentum equation, based
on the preceding equations, is presented in figure 2. This figure is
primarily a set of curves giving wo/¥h as a function of V/wh for

specified values of the induced drag-lift ratio. As such wo/Wn may
be read directly on the ordinate for any given value of V/wh. It is
understood, of course, that the velocity w, is obtained from
equation (8).

In consequence of equation (ll), lines of constant V/wo are

radial lines in figure 2. A number of such lines are shown. These
may be used as a guide in determining the values of V/WO without




recourse to equation (11). In this regard, for V/wg 2 6, a line may

be drawn through both the origin and any point determined by specified
values of V/wy and Dj/L. The required value of V/wg may then be

read directly from the V/wy scale at the intersection of the radial
line and the top of the figure (WO/Wh = l.O).

According to equations (14) and (15), X and 6, are functions
of W0 /VWh only. Therefore scales have been added to figure 2 in order

to allow these quantities to be read directly. These scales are
extremely compressed for wake angles near the vertical. For greater
ease of reading, figure 3 has been prepared. This figure presents
directly the wake angles as a function of WO /¥ - Note in particular

the signs and quadrants of these angles as pointed out following equa-
tions (14) and (15).

The horizontal induced velocity wug can be obtained by using
Wo/Ws @s obtained from figure 2, in equation (4). In the case L =0,

ug may be obtained from equation (17).

The same chart may be used in rearward flight as well provided that
V/wy, V/wy, X, and D;j/L are all simultaneously multiplied by -1.

DISCUSSION

It will be observed in figure 2 that, for all cases of forward
thrust (Di/L < O), the vertical induced velocity wqy decreases con-

tinuously as the forward velocity increases. Note that when D;/L <O

there is a forward-directed component of force and, consequently, a
rearward-directed horizontal induced velocity even at zero forward
speed. The superposition of a forward velocity always adds to this
horizontal velocity, increasing the mass flow through the system and
reducing the required vertical induced velocity for a given lift.

On the other hand, when there is a drag or negative thrust
(Di/L > O), the vertical induced velocity increases until wo/wy is

equal to one and then decreases thereafter. The reason for this
behavior will become evident upon consideration of the mass flow
through the system. In this case, when D;/L > O, the horizontal
force is rearward and the net horizontal velocity is the difference
between the forward velocity and the horizontal induced velocity.
Thus, as the forward speed is increased from zero, the mass flow is
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decreased and the vertical induced velocity required for a given 1ift
is increased. At a forward speed of V/wp = V/iwg = -D; /L, the forward

velocity exactly cancels the horizontal component of induced velocity.
Thus, at this speed, the mass flow has its minimum value and the
required vertical induced velocity has its maximum value. Further
increases in forward speed increase the mass flow so that the vertical
induced velocity decreases thereafter.

At very large values of Di/L, the curves of Wo/wh against V/wy
become triple valued in the range of values near V/wh of -Di/L. For

these conditions, it is likely that no true wake, as postulated by
momentum theory, exists. This situation is similar to the vortex ring
state of a propeller or rotor (ref. 6) and probably also to the sepa-
rated flow of a flat plate at high angles of attack.

It should be noted in particular that the induced velocities and
the wake skew angle of the present analysis are always defined in rela-
tion to the 1lift and drag axes of the aircraft. This is not always the
case when applying the results of the analysis and suitable adjustments
must be made in certain cases. For example, reference 7 gives the flow
field of rotors or propellers as a function of wake skew angle where
the skew angle is defined in relation to the tip-path-plane axes. 1In
this case, X of reference 7 is equal to X + a from the present
paper.

CONCLUDING REMARKS

A nomographic solution for the induced velocities and wake skew
angle of an arbitrary aerodynamic force-generating system has been given.
These quantities may be obtained directly from a chart which requires a
knowledge of only the 1ift and induced drag of the system.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., February 1k, 1961.
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(a) General system.

Figure l.- Force and velocity vectors at aircraft.
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Rotor tip-path plane

(b) System for rotor.

Figure 1.- Concluded.
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Figure 3.- Skew angle and wake deflection angle as functions of wo/wh.
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